تبلیغات
تبلیغات در سایت
تبلیغات
تبلیغات
مطالب محبوب
مطالب تصادفی
آخرین مطالب
به کانال ریاضی کده در تلگرام بپیوندید
خبرنامه
خبرنامه

براي اطلاع از آپدیت شدن سایت در خبرنامه سایت عضو شويد تا جديدترين مطالب به ايميل شما ارسال شود

نظرسنجی
مطلب مورد علاقه خود را بنویسید ؟




کدهای اختصاصی
همه چیز در باره واژه <بینهایت> در ریاضی
تا حالا به معنی کلمه بی نهایت فکر کرده اید؟ و اینکه این کلمه در ریاضی به چه مفهومی اشاره دارد؟این دفعه تصمیم گرفتم برای دوستان خوبم در ریاضی کده مطلبی پیرامون این واژه قرار بدهم.
با مفهوم بینهایت در ریاضی آشنا شوید-(سایت رهیار)بی نهایت از واژه لاتین "finitus" به معنی "محدود" گرفته شده ( علامت ∞ ) چیزی است که "محدود" نیست، که در آن هیچ محدودیت فضایی و زمانی وجود ندارد.
 
با مفهوم بینهایت در ریاضی آشنا شوید-(سایت رهیار)نگرش باستانی در مورد بی نهایت
نگرش باستانی ازارسطو آغاز شده است :
"تفکر درباره یک عدد بزرگ همیشه ممکن است: چون تعداد دفعاتی که میتوان یک مقدار را به دو نیمه تقسیم کرد، بی نهایت است. بنابراین بی نهایت، امکان بالقوهای است که هرگز بالفعل نمی گردد؛ تعداد اجزایی را که می توان به دست آورد، همیشه از هر عدد معینی بیشتر است."
به این مورد اغلب بی نهایت "بالقوه" اطلاق می شود، بهرحال دو نظریه در این مورد با هم ترکیب شده اند که عبارتند از..............
 
با مفهوم بینهایت در ریاضی آشنا شوید-(سایت رهیار)1-یکی اینکه همیشه پیدا کردن چیزی هایی که تعداد آنها از هر عددی بیشتر باشد ممکن است، اگرچه آن چیزها عملا وجود نداشته باشند.
با مفهوم بینهایت در ریاضی آشنا شوید-(سایت رهیار)2-دیگر اینکه ما می توانیم بدون محدودیتی، اعداد بالاتر از محدود را شمارش کنیم.
 
مثلا "برای هر عدد صحیح n، یک عدد صحیح m (m > n وجود دارد. دومین نگرش را بصورت واضحتر در آثار نویسندگان قرون وسطایی مثل William of Ockham میتوان یافت :
( هر زنجیره حقیقتا وجود دارد. بنابراین هر یک از اجزاء آن واقعا در طبیعت وجود دارد. اما اجزاء زنجیره نامحدود هستند چون هیچ عدد بزرگی نیست که عددی بزرگتر از آن نباشد، پس اجزاء نامحدود واقعا وجود دارند.)
اجزاء از بعضی جهات واقعا وجود دارند. بهرحال، در این نگرش، هیچ بزرگی بی نهایتی نمی تواند یک عدد داشته باشد، چون هر عددی را که تصور کنیم، همیشه عددی بزرگتر از آن وجود دارد: "هیچ بزرگی (از لحاظ عددی ) نیست که بزرگتر از آن نباشد. ( Aquinas همچنین بر ضد این نظریه که بینهایت میتواند از هر جهت کامل یا کلی باشد بحث کرده است.
نگر ش های نوین آغازین
با مفهوم بینهایت در ریاضی آشنا شوید-(سایت رهیار)گالیله در زمان بازداشت طولانی در خانه اش در Sienna بعد از محکومیتش توسط استنطاق مذهبی اولین کسی بود که متوجه شد می توان مجموعه ای از بی نهایت عدد را بصورت تناظر یک به یک با یکی از زیر مجموعه های حقیقی آن در کنار هم قرارداد.
 
با این استدلال مشخص می شود، اگرچه طبیعتا یک مجموعه که بخشی از مجموعه دیگر بوده، کوچکتر است(چون تمام اعضاء آن مجموعه را شامل نمی شود) از بعضی جهات هم اندازه اند. او معتقد بود این یکی از مشکلاتی است که وقتی ما میخواهیم "با ذهن محدود خود" یک امر نامحدود را درک کنیم، پیش می آید
با مفهوم بینهایت در ریاضی آشنا شوید-(سایت رهیار)ادراک ریاضی
درک ریاضی مدرن از بینهایت در اواخر قرن نوزدهم توسط کارهای Georg Cantor ،
Richard Dedekind , Gottlob Frege و دیگران با استفاده از ایده مجموعه ها، توسعه یافت. برخورد آنها در اصل به قبول ایده ««تناظر یک به یک بعنوان یک استاندارد برای مقایسه سایز مجموعه ها بود، و رد کردن نظر گالیله (که از اقلیدس ناشی شده بود) مبنی بر اینکه کل نمیتواند هم اندازه جزء باشد. یک مجموعه نامحدود را میتوان بصورت ساده طوری تعریف نمود که هم اندازه حداقل یکی از اجزاء "مناسب" آن باشد.

دینسان کانتور نشان داد که مجموعه های بینهایت میتوانند اندازه های متفاوت داشته باشند، با تمایز بین مجموعه های بینهایت قابل شمارش و بینهایت غیر قابل شمارش، و یک فرضیه اعداد کاردینال را حول این مطلب توسعه داد. نظر او غالب گردید و ریاضیات مدرن عملا بینهایت را پذیرفت. سیستمهای اعداد توسعه یافته مشخصی، مانند اعداد حقیقی، اعداد معمولی(محدود) و اعداد نامحدود را با سایزهای مختلف، متحد می نمایند.
 

وقتی سروکارمان با مجموعه های نامحدود می افتد، بصیرت کسب شده ما از مجموعه های محدود ازکار میافتد. یک مثال برای این پارادوکس گراند هتل هیلبرت است.
 

با مفهوم بینهایت در ریاضی آشنا شوید-(سایت رهیار)یک سوال فریبکارانه این است که آیا بینهایت عملی در کیهان مادی وجود دارد؟
 آیا تعداد ستاره ها نامحدود است؟
آیا کیهان دارای حجم نامحدود است؟
 آیا فضا "تا ابد ادامه" دارد؟
 این یک سوال باز مهم در کیهان شناسی است. توجه داشته باشید که سوال از نامحدود بودن بصورت منطقی، غیر از سوال در مورد داشتن مرز می باشد. سطح دو بعدی زمین، برای مثال، محدود است، در حالیکه هیج مرزی ندارد. با راه رفتن / دریانوردی / رانندگی به اندازه کافی طولانی در مسیر مستقیم، شما درست به همان نقطه ای که شروع کرده بودید، باز می گردید.
کیهان، حداقل در مبادی و اصول، ممکن است بر اساس یک اصل مشابه عمل نماید؛ اگر شما با فضاپیمای خود به اندازه کافی طولانی در مسیر مستقیم و روبروی خود پرواز کنید، شما اتفاقا و بصورت ناگهانی دوباره از همان نقطه ایی که از آن شروع کرده بودید، می گذرید.
 
با مفهوم بینهایت در ریاضی آشنا شوید-(سایت رهیار)نظریات مدرن
 
مباحث مدرن درباره بینهایت، امروزه بصورت بخشی از تئوری مجموعه و ریاضیات مورد توجه قرار گرفته است، و کلا فلاسفه از بحث درباره آن احتراز می کنند. Wittgenstein یک استثناء بوده است، کسی که حملات مهیجی را علیه بدیهیات تئوری مجموعه، و ایده بینهایت عملی، در "اواسط عمر خود" انجام داد.
با مفهوم بینهایت در ریاضی آشنا شوید-(سایت رهیار)بینهایت امروزه به انواع مجموعه های نامحدود زیادی تقسیم شده است،
 مانند aleph-null ، یک سری قابل شمارش از اعداد طبیعی،
 و beth-one ، یک سری غیر قابل شمارش مانند تعداد کمانهای موجود در یک دایره یا تعداد نقاط روی یک خط، و یک تعداد نامحدود از چیزهای دیگر.
آیا معادله m = 2n گروه تمام اعداد را با زیرگروههایش مرتبط می کند؟ خیر. آن هر عدد دلخواهی را با دیگری مرتبط می سازد، و بدین ترتیب ما به گروههای زوج نامحدود وارد می شویم، که هرکدام به دیگری مرتبط میباشد، ولی هرگز به گروه یا زیرگروهی مرتبط نیستند.
هیچیک از این دو، یکجوری خودش یا دیگر گونه از یک زوج گروه،فرآیند نامحدود نمی باشند ... در موهومات که m = 2n یک گروه را به زیر گروه هایش مرتبط میسازد، هنوز ما صرفا یک حالت از دستور زبان دوپهلو را خواهیم داشت.

 


درباره : شعر ریاضی ,
برچسب ها : ریاضیات , مقالات ریاضی , بی نهایت , بی نهایت در ریاضی , ghmr.ir , محمود قاسمی , سایت رسمی محمود قاسمی , قاسمی ,
336
تاریخ : جمعه 06 تير 1393
نویسنده : حامد قاسمی
مطالب مرتبط
بوی ماه مهر
ریاضی نامه
ارسال نظر برای این مطلب

نام
ایمیل (منتشر نمی‌شود) (لازم)
وبسایت
:) :( ;) :D ;)) :X :? :P :* =(( :O @};- :B /:) :S
نظر خصوصی
مشخصات شما ذخیره شود ؟ [حذف مشخصات] [شکلک ها]
کد امنیتی
آمار سایت
  • کل مطالب : 1474
  • کل نظرات : 255
  • افراد آنلاین : 2
  • تعداد اعضا : 399
  • بازدید امروز : 147
  • باردید دیروز : 1,905
  • گوگل امروز : 7
  • گوگل دیروز : 130
  • بازدید هفته : 10,533
  • بازدید ماه : 32,018
  • بازدید سال : 911,943
  • بازدید کلی : 3,031,765
  • اطلاعات کاربری
    نام کاربری :
    رمز عبور :
  • فراموشی رمز عبور؟
  • عضویت سریع
  • نام کاربری :
    رمز عبور :
    تکرار رمز :
    ایمیل :
    نام اصلی :
    کد امنیتی : * کد امنیتیبارگزاری مجدد
    کانال تلگرام ما : https://telegram.me/ghmrir